Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370785

RESUMO

Stress granules (SGs) are macromolecular assemblies that form under cellular stress. Formation of these condensates is driven by the condensation of RNA and RNA-binding proteins such as G3BPs. G3BPs condense into SGs following stress-induced translational arrest. Three G3BP paralogs (G3BP1, G3BP2A, and G3BP2B) have been identified in vertebrates. However, the contribution of different G3BP paralogs to stress granule formation and stress-induced gene expression changes is incompletely understood. Here, we identified key residues for G3BP condensation such as V11. This conserved amino acid is required for formation of the G3BP-Caprin-1 complex, hence promoting SG assembly. Total RNA sequencing and ribosome profiling revealed that disruption of G3BP condensation corresponds to changes in mRNA levels and ribosome engagement during the integrated stress response (ISR). Moreover, we found that G3BP2B preferentially condenses and promotes changes in mRNA expression under endoplasmic reticulum (ER) stress. Together, this work suggests that stress granule assembly promotes changes in gene expression under cellular stress, which is differentially regulated by G3BP paralogs.

2.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808656

RESUMO

Ribosome biogenesis is coordinated within the nucleolus, a biomolecular condensate that exhibits dynamic material properties that are thought to be important for nucleolar function. However, the relationship between ribosome assembly and nucleolar dynamics is not clear. Here, we screened 364 genes involved in ribosome biogenesis and RNA metabolism for their impact on dynamics of the nucleolus, as measured by automated, high-throughput fluorescence recovery after photobleaching (FRAP) of the nucleolar scaffold protein NPM1. This screen revealed that gene knockdowns that caused accumulation of early rRNA intermediates were associated with nucleolar rigidification, while accumulation of late intermediates led to increased fluidity. These shifts in dynamics were accompanied by distinct changes in nucleolar morphology. We also found that genes involved in mRNA processing impact nucleolar dynamics, revealing connections between ribosome biogenesis and other RNA processing pathways. Together, this work defines mechanistic ties between ribosome assembly and the biophysical features of the nucleolus, while establishing a toolbox for understanding how molecular dynamics impact function across other biomolecular condensates.

3.
EMBO J ; 38(13): e101153, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268608

RESUMO

microRNAs (miRNAs) guide Argonaute proteins to mRNAs targeted for repression. Target recognition occurs primarily through the miRNA seed region, composed of guide (g) nucleotides g2-g8. However, nucleotides beyond the seed are also important for some known miRNA-target interactions. Here, we report the structure of human Argonaute2 (Ago2) engaged with a target RNA recognized through both miRNA seed and supplementary (g13-g16) regions. Ago2 creates a "supplementary chamber" that accommodates up to five miRNA-target base pairs. Seed and supplementary chambers are adjacent to each other and can be bridged by an unstructured target loop of 1-15 nucleotides. Opening of the supplementary chamber may be constrained by tension in the miRNA 3' tail, as increases in miRNA length stabilize supplementary interactions. Contrary to previous reports, we demonstrate that optimal supplementary interactions can increase target affinity > 20-fold. These results provide a mechanism for extended miRNA targeting, suggest a function for 3' isomiRs in tuning miRNA targeting specificity, and indicate that supplementary interactions may contribute more to target recognition than is widely appreciated.


Assuntos
Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , MicroRNAs/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , RNA Mensageiro/química
4.
Mol Cell ; 75(6): 1243-1255.e7, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31353209

RESUMO

MicroRNAs (miRNAs) broadly regulate gene expression through association with Argonaute (Ago), which also protects miRNAs from degradation. However, miRNA stability is known to vary and is regulated by poorly understood mechanisms. A major emerging process, termed target-directed miRNA degradation (TDMD), employs specialized target RNAs to selectively bind to miRNAs and induce their decay. Here, we report structures of human Ago2 (hAgo2) bound to miRNAs and TDMD-inducing targets. miRNA and target form a bipartite duplex with an unpaired flexible linker. hAgo2 cannot physically accommodate the RNA, causing the duplex to bend at the linker and display the miRNA 3' end for enzymatic attack. Altering 3' end display by changing linker flexibility, changing 3' end complementarity, or mutationally inducing 3' end release impacts TDMD efficiency, leading to production of distinct 3'-miRNA isoforms in cells. Our results uncover the mechanism driving TDMD and reveal 3' end display as a key determinant regulating miRNA activity via 3' remodeling and/or degradation.


Assuntos
Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Estabilidade de RNA , Animais , Proteínas Argonautas/genética , Células HEK293 , Humanos , MicroRNAs/genética , Células Sf9 , Spodoptera
5.
Artigo em Inglês | MEDLINE | ID: mdl-32019864

RESUMO

microRNAs (miRNAs) are crucial for posttranscriptional regulation of messenger RNAs. "Classical" miRNA targets predominantly interact with the miRNA seed sequence located near the miRNA 5' end. Interestingly, certain transcripts that exhibit extensive complementarity to the miRNAs 3' region, instead of being subjected to regulation, induce miRNA decay in a process termed target-directed miRNA degradation (TDMD). Here, we review recent advances in understanding the molecular mechanisms of TDMD. Specifically, we discuss how extensive miRNA complementarity to TDMD-inducing targets results in displacement of the miRNA 3' end from its protective pocket in the Argonaute protein. Unprotected miRNA 3' ends are then available for enzymatic attack by still-unidentified cellular enzymes. Identification of these cellular enzymes and discovery of additional TDMD-inducing transcripts are subjects for future research.

6.
Nat Methods ; 15(10): 785-788, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202058

RESUMO

The structural flexibility of RNA underlies fundamental biological processes, but there are no methods for exploring the multiple conformations adopted by RNAs in vivo. We developed cross-linking of matched RNAs and deep sequencing (COMRADES) for in-depth RNA conformation capture, and a pipeline for the retrieval of RNA structural ensembles. Using COMRADES, we determined the architecture of the Zika virus RNA genome inside cells, and identified multiple site-specific interactions with human noncoding RNAs.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Humanos , Proteínas de Ligação a RNA/química , Análise de Sequência de RNA/métodos , Transcriptoma , Zika virus/isolamento & purificação , Infecção por Zika virus/genética , Infecção por Zika virus/virologia
7.
Cell ; 173(4): 946-957.e16, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29576456

RESUMO

miRISC is a multi-protein assembly that uses microRNAs (miRNAs) to identify mRNAs targeted for repression. Dozens of miRISC-associated proteins have been identified, and interactions between many factors have been examined in detail. However, the physical nature of the complex remains unknown. Here, we show that two core protein components of human miRISC, Argonaute2 (Ago2) and TNRC6B, condense into phase-separated droplets in vitro and in live cells. Phase separation is promoted by multivalent interactions between the glycine/tryptophan (GW)-rich domain of TNRC6B and three evenly spaced tryptophan-binding pockets in the Ago2 PIWI domain. miRISC droplets formed in vitro recruit deadenylation factors and sequester target RNAs from the bulk solution. The condensation of miRISC is accompanied by accelerated deadenylation of target RNAs bound to Ago2. The combined results may explain how miRISC silences mRNAs of varying size and structure and provide experimental evidence that protein-mediated phase separation can facilitate an RNA processing reaction.


Assuntos
Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Motivos de Aminoácidos , Proteínas Argonautas/genética , Sítios de Ligação , Recuperação de Fluorescência Após Fotodegradação , Células HEK293 , Humanos , Transição de Fase , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo
8.
J Mol Biol ; 429(17): 2619-2639, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28757069

RESUMO

Nearly every cell in the human body contains a set of programmable gene-silencing proteins named Argonaute. Argonaute proteins mediate gene regulation by small RNAs and thereby contribute to cellular homeostasis during diverse physiological process, such as stem cell maintenance, fertilization, and heart development. Over the last decade, remarkable progress has been made toward understanding Argonaute proteins, small RNAs, and their roles in eukaryotic biology. Here, we review current understanding of Argonaute proteins from a structural prospective and discuss unanswered questions surrounding this fascinating class of enzymes.


Assuntos
Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Células Eucarióticas/enzimologia , Interferência de RNA , Eucariotos/fisiologia
9.
J Am Chem Soc ; 138(28): 8667-9, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27387838

RESUMO

Short interfering RNAs (siRNAs) are promising therapeutics that make use of the RNA interference (RNAi) pathway, but liabilities arising from the native RNA structure necessitate chemical modification for drug development. Advances in the structural characterization of components of the human RNAi pathway have enabled structure-guided optimization of siRNA properties. Here we report the 2.3 Å resolution crystal structure of human Argonaute 2 (hAgo2), a key nuclease in the RNAi pathway, bound to an siRNA guide strand bearing an unnatural triazolyl nucleotide at position 1 (g1). Unlike natural nucleotides, this analogue inserts deeply into hAgo2's central RNA binding cleft and thus is able to modulate pairing between guide and target RNAs. The affinity of the hAgo2-siRNA complex for a seed-only matched target was significantly reduced by the triazolyl modification, while the affinity for a fully matched target was unchanged. In addition, siRNA potency for off-target repression was reduced (4-fold increase in IC50) by the modification, while on-target knockdown was improved (2-fold reduction in IC50). Controlling siRNA on-target versus microRNA (miRNA)-like off-target potency by projection of substituent groups into the hAgo2 central cleft from g1 is a new approach to enhance siRNA selectivity with a strong structural rationale.


Assuntos
RNA Interferente Pequeno/genética , Proteínas Argonautas/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/deficiência , Classe I de Fosfatidilinositol 3-Quinases/genética , Humanos , Nucleotídeos/química , Interferência de RNA , RNA Interferente Pequeno/química , Triazóis/química
10.
Elife ; 42015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26359634

RESUMO

MicroRNAs (miRNAs) direct post-transcriptional regulation of human genes by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. An enigmatic feature of many conserved mammalian miRNA target sites is that an adenosine (A) nucleotide opposite miRNA nucleotide-1 confers enhanced target repression independently of base pairing potential to the miRNA. In this study, we show that human Argonaute2 (Ago2) possesses a solvated surface pocket that specifically binds adenine nucleobases in the 1 position (t1) of target RNAs. t1A nucleotides are recognized indirectly through a hydrogen-bonding network of water molecules that preferentially interacts with the N6 amine on adenine. t1A nucleotides are not utilized during the initial binding of Ago2 to its target, but instead function by increasing the dwell time on target RNA. We also show that N6 adenosine methylation blocks t1A recognition, revealing a possible mechanism for modulation of miRNA target site potency.


Assuntos
Adenosina/metabolismo , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , MicroRNAs/metabolismo , Água/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
11.
Science ; 346(6209): 608-13, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25359968

RESUMO

MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. We determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides (nt) 2 to 5 for initial target pairing. Pairing to nt 2 to 5 promotes conformational changes that expose nt 2 to 8 and 13 to 16 for further target recognition. Interactions with the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, whereas an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. These results explain the conserved nucleotide-pairing patterns in animal miRNA target sites first observed over two decades ago.


Assuntos
Proteínas Argonautas/química , Regulação da Expressão Gênica , MicroRNAs/química , Proteínas Argonautas/genética , Sequência de Bases , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Humanos , Magnésio/química , MicroRNAs/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , Pequeno RNA não Traduzido
12.
J Biol Chem ; 287(46): 38656-64, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22988237

RESUMO

The signaling pathway mediated by BMPs plays an essential role during development as well as the maintenance of homeostasis in adult. Aberrant activation or inactivation of BMP signaling can lead to developmental defects and various human disorders. To fine-tune its activity, BMP signaling is regulated both positively and negatively by extrinsic and intrinsic regulatory factors that modulate binding of ligand to the receptors, and the activity of receptors and their dedicated signal transducers, the Smad proteins. Upon BMP binding to the receptor complex, Smad proteins translocate to the nucleus and modulate gene expression transcriptionally by directly associating with the promoter region of target genes, or post-transcriptionally through modulation of microRNA (miRNA) synthesis. In this study, we demonstrate that BMP signaling down-regulates transcription of the miRNA-302∼367 gene cluster. We show that the type II BMP receptor (BMPRII) is a novel target of miR-302. Upon overexpression, miR-302 targets a partially complementary sequence localized in the 3'-untranslated region (UTR) of BMPRII transcripts and leads to destabilization of the transcripts and down-regulation of BMP signaling. We propose that the negative regulatory loop of BMP4-miR-302-BMPRII is a potential mechanism for the maintenance and fine-tuning of the BMP signaling pathway in various systems.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , MicroRNAs/antagonistas & inibidores , Regiões 3' não Traduzidas , Animais , Aorta/citologia , Células COS , Chlorocebus aethiops , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C3H , MicroRNAs/química , MicroRNAs/metabolismo , Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Interferência de RNA , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...